Telegram Group & Telegram Channel
В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)

Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.

🔍 Активное обучение:
— Фокусируется на выборке самых информативных примеров из неразмеченного пула.
Эти выбранные примеры отправляются эксперту для разметки.
— Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.

🔍 Полунаблюдаемое обучение:
— Использует все доступные неразмеченные данные без дополнительной ручной разметки.
— Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение.
— Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.

Комбинация подходов:
Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/974
Create:
Last Update:

В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)

Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.

🔍 Активное обучение:
— Фокусируется на выборке самых информативных примеров из неразмеченного пула.
Эти выбранные примеры отправляются эксперту для разметки.
— Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.

🔍 Полунаблюдаемое обучение:
— Использует все доступные неразмеченные данные без дополнительной ручной разметки.
— Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение.
— Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.

Комбинация подходов:
Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/974

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Библиотека собеса по Data Science | вопросы с собеседований from kr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA